Monoclonal Antibodies against Accumulation-Associated Protein Affect EPS Biosynthesis and Enhance Bacterial Accumulation of Staphylococcus epidermidis
نویسندگان
چکیده
Because there is no effective antibiotic to eradicate Staphylococcus epidermidis biofilm infections that lead to the failure of medical device implantations, the development of anti-biofilm vaccines is necessary. Biofilm formation by S. epidermidis requires accumulation-associated protein (Aap) that contains sequence repeats known as G5 domains, which are responsible for the Zn(2+)-dependent dimerization of Aap to mediate intercellular adhesion. Antibodies against Aap have been reported to inhibit biofilm accumulation. In the present study, three monoclonal antibodies (MAbs) against the Aap C-terminal single B-repeat construct followed by the 79-aa half repeat (AapBrpt1.5) were generated. MAb(18B6) inhibited biofilm formation by S. epidermidis RP62A to 60% of the maximum, while MAb(25C11) and MAb(20B9) enhanced biofilm accumulation. All three MAbs aggregated the planktonic bacteria to form visible cell clusters. Epitope mapping revealed that the epitope of MAb(18B6), which recognizes an identical area within AapBrpt constructs from S. epidermidis RP62A, was not shared by MAb(25C11) and MAb(20B9). Furthermore, all three MAbs were found to affect both Aap expression and extracellular polymeric substance (EPS, including extracellular DNA and PIA) biosynthesis in S. epidermidis and enhance the cell accumulation. These findings contribute to a better understanding of staphylococcal biofilm formation and will help to develop epitope-peptide vaccines against staphylococcal infections.
منابع مشابه
Inhibition of Staphylococcus epidermidis biofilm formation by rabbit polyclonal antibodies against the SesC protein.
Several well-studied proteins with defined roles in Staphylococcus epidermidis biofilm formation are LPXTG motif-containing proteins. Here, we investigate the possible use of the LPXTG motif-containing protein SesC (S. epidermidis surface protein C; accession no. NP_765787) as a target for antibodies to prevent biofilm formation. In vitro and in a in vivo rat model of catheter infection, gene a...
متن کاملStaphylococcus aureus Manganese Transport Protein C Is a Highly Conserved Cell Surface Protein That Elicits Protective Immunity Against S. aureus and Staphylococcus epidermidis
Staphylococcus aureus and other staphylococci cause severe human disease, and there are currently no vaccines available. We evaluated whether manganese transport protein C (MntC), which is conserved across the staphylococcal species group, could confer protection against S. aureus and Staphylococcus epidermidis. In vivo analysis of S. aureus MntC expression revealed that expression occurs very ...
متن کاملThe fibrinogen binding protein of Staphylococcus epidermidis is a target for opsonic antibodies.
Antibodies against the fibrinogen binding protein (Fbe) of Staphylococcus epidermidis significantly increased macrophage phagocytosis. Antibodies against autolysin E were opsonic but to a lesser extent. Antibodies against a novel, putatively surface-located antigen were unable to enhance phagocytosis. The severity of systemic infection of mice with S. epidermidis was reduced if the bacteria wer...
متن کاملSmall, antibacterial and large, inactive peptides of neutrophil granules share immunoreactivity to a monoclonal antibody.
Monoclonal antibodies were raised against a bactericidal protein fraction that was purified from an extract of bovine neutrophil granules and that was previously shown (A. Savoini, R. Marzari, L. Dolzani, D. Serranò, G. Graziosi, R. Gennaro, and D. Romeo, Antimicrob. Agents Chemother. 26:405-407, 1984) to inhibit bacterial DNA synthesis. One of these antibodies, BP97, was covalently linked to A...
متن کاملNitazoxanide inhibits biofilm formation by Staphylococcus epidermidis by blocking accumulation on surfaces.
Coagulase-negative species of Staphylococcus are often associated with opportunistic hospital-acquired infections that arise from the colonization of indwelling catheters. Here we show that the antiparasitic drug nitazoxanide (NTZ) and its active metabolite, tizoxanide (TIZ), are inhibitory to the growth of Staphylococcus epidermidis and other staphylococci, including methicillin-resistant Stap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011